

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

A novel one-dimensional silver cylinder stabilized by mixed 2-mercaptobenzoic acid and ethylenediamine ligands

Di Sun* and Zhi-Hao Yan

School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China Correspondence e-mail: dsun@sdu.edu.cn

Received 27 April 2012 Accepted 9 July 2012 Online 20 July 2012

A novel infinite one-dimensional silver cylinder, namely poly[μ -ethylenediamine- μ_5 -(2-sulfanidylbenzoato)- μ_4 -(2-sulfanidylbenzoato)-tetrasilver(I)], $[Ag_4(C_7H_4O_2S)_2(C_2H_8N_2)]_n$ has been synthesized by one-pot reaction of equivalent molar silver nitrate and 2-mercaptobenzoic acid (H₂mba) in the presence of ethylenediamine (eda). One Ag atom is located in an AgS₂NO four-coordinated tetrahedral geometry, two other Ag atoms are in an AgS₂O three-coordinated T-shaped geometry and the fourth Ag atom is in an AgSNO coordination environment. The two mba ligands show two different binding modes. The μ_2 -N:N'-eda ligand, acting as a bridge, combines with mba ligands to extend the Ag^I ions into a one-dimensional silver cylinder incorporating abundant Ag···Ag interactions ranging from 2.9298 (11) to 3.2165 (13) Å. Interchain $N-H\cdots O$ hydrogen bonds extend the one-dimensional cylinder into an undulating two-dimensional sheet, which is further packed into a three-dimensional supramolecular framework by van der Waals interactions; no π - π interactions were observed in the crystal structure.

Comment

In recent decades, the crystal engineering of Ag^{I} coordination architectures has become a thriving and prosperous field that has attracted increasing interest because of the intriguing structural topologies and functional properties such as conductance and luminescence (Munakata *et al.*, 1997; Jia & Wang, 2009; Wu *et al.*, 2010; Kang *et al.*, 2010; Anson *et al.*, 2008). Ag^I-based coordination compounds, classified as discrete silver clusters or infinite coordination polymers, have been much studied (Mak *et al.*, 2007; Xie *et al.*, 2011; Jin *et al.*, 2009; Zhang *et al.*, 2007). The selection of chelating or bridging organic linkers favoring a structure-specific assembly is important for the construction of coordination architectures with expected structures and properties (Sun *et al.*, 2006; Sun, Dai *et al.*, 2011; Dai *et al.*, 2008). However, the factors that govern the formation of such compounds are complicated and include not only the nature of the Ag^I ion and ligand structure but also anion-directed interactions as well as reaction conditions. In addition to covalent bonds, noncovalent interactions, such as π - π , hydrogen bond, cation \cdots π , anion \cdots π and Ag \cdots Ag interactions, also play important roles in controlling molecular packing (Domasevitch *et al.*, 2007; Yin *et al.*, 2012; Chen *et al.*, 2010; Li, Wei *et al.*, 2010; Li *et al.*, 2011). Thus, in reality, it is hard to predict the structure of a Ag^I coordination compound with given ligand(s) until it has been characterized by X-ray single-crystal diffraction.

The bifunctional 2-mercaptobenzoic acid (H₂mba) ligand has 'soft' S-atom and 'hard' O-atom donors, which could bind more than one Ag^I center by S- and O-atom donors with diverse binding modes. Ethylenediamine (eda) can act as a bridging or chelating ligand to anchor on any unsaturated Ag^I centers. Although Ag^I-mba (Sun, Wang, Liu et al., 2011) and Ag^I-eda (Ren et al., 2001; Yilmaz et al., 2006) coordination compounds have been widely investigated, the AgI-mba-eda system has not yet been documented. Based on the above consideration and our previous work (Sun, Luo et al., 2011; Sun, Wang, Han et al., 2011; Sun, Yang et al., 2010), herein we describe a novel, infinite, one-dimensional silver cylinder, namely poly[μ -ethylenediamine- μ_5 -(2-sulfanidylbenzoato)- μ_4 -(2-sulfanidylbenzoato)-tetrasilver(I)], [Ag₄(mba)₂(eda)]_n, (I), which was obtained by a one-pot reaction of molar equivalent silver nitrate and 2-mercaptobenzoic acid (H₂mba) in the presence of ethylenediamine (eda).

Single-crystal X-ray diffraction reveals that the asymmetric unit of (I) contains four crystallographically independent Ag^I ions, two dianionic mba ligands and one neutral eda ligand. As shown in Fig. 1, Ag1 is located in a distorted AgS₂NO fourcoordinated tetrahedral geometry with a distortion parameter τ_4 of 0.82. The τ_4 index is defined as the sum of the two largest angles around the four-coordinated metal center subtracted from 360°, all divided by 141° (Yang *et al.*, 2007). The values of τ_4 range from 1.00 for a perfect tetrahedral geometry to 0 for a perfect square-planar geometry. Ag2 and Ag3 are in the AgS₂O three-coordinated T-shaped geometry with the largest angles being 152.41 (11) and 162.44 (12)°, respectively. Ag4 is also in a three-coordinated geometry, but in an AgSNO coordination environment. The Ag–S [2.458 (3)–2.718 (3) Å],

Figure 1

The structure of (I), showing the coordination environments around the Ag^I centers. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. Dashed lines indicate Ag...Ag interactions, as described in the *Comment*. [Symmetry codes: (i) x, y + 1, z; (ii) $-x + \frac{3}{2}, y + \frac{1}{2}, z$; (iii) $-x + \frac{3}{2}, y - \frac{1}{2}, z$; (iv) x, y - 1, z.]

Ag-N [2.253 (9) and 2.310 (8) Å] and Ag-O [2.308 (8)-2.532 (7) Å] bond lengths (Table 1) are comparable with reported values (Schottel et al., 2006; Tsyba et al., 2003). The two mba ligands show different binding modes. The μ_2 - N^1 : N^1 eda ligand acts as a bridge between Ag^I ions. Notably, the N1-C1-C2-N2 torsion angle of eda is $70.9 (13)^{\circ}$ which fits well with a gauche conformation of eda according to stereochemical terminology (Moss, 1996). The Ag $\cdot \cdot \cdot$ Ag interactions vary from 2.9298 (11) to 3.2165 (13) Å, with an average of 3.1123 (12) Å, which is 0.3 Å shorter than twice the van der Waals radius of Ag^I (3.44 Å; Bondi, 1964), indicating argentophilic interaction. This weak bonding interaction between two closed-shell d^{10} cations is possible via the participation of 5s and 5p orbitals which have similar energy to the 4d orbital. Similar argentophilic interactions were also found in the related cluster compounds {[Ag₆₂S₁₃(SBu^t)₃₂](BF₄)₄} (Li, Lei et al., 2010) and { $(NH_4)_{17}[(\mu_6-S)Ag_{17}(mba)_{16}]\cdot 22H_2O$ } (Sun, Liu *et al.*, 2011), as well as in the coordination polymer $[Ag_4(mba)_2(H_2O)_2]_n$ (Sun, Luo *et al.*, 2010).

The crystal structure of (I) features a one-dimensional Ag^I cylinder (Fig. 2) running along the b axis which is reinforced by intrachain N1-H1C···O3 and N2-H2C···O1 hydrogen bonds (Table 2), with an average distance of 2.981 (12) Å, a $C-H\cdots\pi$ interaction $[C1-H1A\cdots Cg1 = 138^{\circ}, H1A\cdots Cg1 =$ 2.96 Å and $C1 \cdot \cdot \cdot Cg1 = 3.738$ (11) Å; Cg1 is the centroid of the C21-C26 ring], a nonclassical C22-H22A...O4 hydrogen bond of 3.449 (13) Å and argentophilic interactions. Moreover, interchain N1-H1D···O1^v and N2-H2D···O1^{vi} hydrogen bonds extend the one-dimensional cylinders into an undulating two-dimensional sheet (Fig. 3), which is further packed into a three-dimensional supramolecular framework by van der Waals interactions; $\pi - \pi$ interactions are not observed in the crystal structure. To the best of our knowledge, most of the reported Ag^I-mba compounds are discrete clusters, such as mononuclear [Ag(Hmba)(triphenylphosphane)₃] (Nomiya et al., 1998), tetranuclear [Ag₄(Hmba)₄-(triphenylphosphane)₄] (Noguchi et al., 2005) and octanuclear $K_{12}[Ag_8(mba)_{10}]$ (Nomiya *et al.*, 2000). Infinite coordination polymers are still rare, which may be due to the strong coordinative ability of the S-atom donor to the Ag^I ion, and, as a result, the metastable polynuclear Ag^I aggregates are protected by them.

Experimental

All reagents and solvents were used as obtained commercially without further purification. A mixture of AgNO₃ (85 mg, 0.5 mmol), H₂mba (78 mg, 0.5 mmol) and eda (1 ml) was added to a CH₃OH-H₂O mixture (12 ml, 1:2 ν/ν) under ultrasonic conditions which helped to dissolve the white precipitate. An aqueous NH₃ solution (25%) was then dropped into the mixture to give a clear solution. The resultant solution was allowed to evaporate slowly in darkness at room temperature over a period of two weeks to give colorless block-shaped crystals of (I). The crystals were washed with deionized water and dried in air (yield *ca* 52%, based on Ag). Elemental analysis calculated for C₆₄H₆₄Ag₄N₈O₁₆S₈: C 40.69, H 3.41, N 5.93%; found: C 40.18, H. 3.09, N 5.29%.

Figure 2

A ball-and-stick perspective view of the one-dimensional cylinder in (I) viewed (a) along c and (b) along b. The argentophilic interactions and hydrogen bonds are highlighted by dashed lines (purple and green, respectively, in the electronic version of the paper).

Figure 3

A perspective view of the two-dimensional undulating sheet viewed (a) along c and (b) along b. The argentophilic interactions and hydrogen bonds are highlighted by dashed lines (purple and green, respectively, in the electronic version of the paper).

Crystal data

Crystal data		Table 1				
$[Ag_4(C_7H_4O_2S)_2(C_2H_8N_2)]$	V = 3858.4 (4) Å ³	Selected geometric parameters (Å, °).				
$M_r = 795.91$ Orthorhombic, <i>Pbca</i>	Z = 8 Mo K α radiation	Ag1-N2 $Ag1-O3^{i}$	2.310 (8) 2.356 (7)	$Ag2-S2^{ii}$ Ag2-Ag3	2.506 (3) 2.9298 (11)	
a = 22.1562 (2) A	$\mu = 4.24 \text{ mm}^{-1}$	Ag1-S2	2.616 (3)	Ag3-S1 ⁱⁱⁱ	2.458 (3)	
b = 6.9556 (7) A	I = 298 K	Ag1-S1	2.696 (3)	Ag3-S1	2.499 (3)	
c = 25.0300 (5) A	$0.15 \times 0.08 \times 0.05 \text{ mm}$	Ag1-Ag2	3.0300 (12)	Ag3–O2	2.532 (7)	
		Ag1-Ag3	3.2102 (12)	Ag3-Ag4 ⁱⁱ	3.1980 (13)	
Data collection		Ag1-Ag4	3.2165 (13)	Ag4-N1	2.253 (9)	
		Ag2–O4 ⁱ	2.365 (8)	Ag4–O2	2.308 (8)	
Oxford Diffraction Gemini S Ultra CCD diffractometer	22503 measured reflections 3392 independent reflections	Ag2-S2	2.474 (3)	Ag4-S1 ^{iv}	2.718 (3)	
Absorption correction: multi-scan	2660 reflections with $I > 2\sigma(I)$					
(CrysAlis RED; Oxford Diffrac-	$R_{\rm int} = 0.075$	N2-Ag1-O3 ⁱ	101.0 (3)	S2-Ag2-S2 ⁱⁱ	152.41 (11)	
tion. 2008)		N2-Ag1-S2	122.5 (2)	S1 ⁱⁱⁱ -Ag3-S1	162.44 (12)	
$T_{\rm min} = 0.569, T_{\rm max} = 0.816$		O3 ⁱ -Ag1-S2	111.3 (2)	S1 ⁱⁱⁱ -Ag3-O2	95.62 (19)	
		N2-Ag1-S1	103.3 (2)	S1-Ag3-O2	81.54 (19)	
		O3 ¹ -Ag1-S1	91.1 (2)	N1 - Ag4 - O2	142.4 (3)	
Refinement		S2-Ag1-S1	121.58 (9)	N1-Ag4-S1 ^{iv}	116.9 (3)	
$P[F^2 > 2\pi(F^2)] = 0.044$	254 peromotors	O4 ⁱ -Ag2-S2	116.7 (2)	O2-Ag4-S1 ^{iv}	98.9 (2)	
K[T > 20(T)] = 0.044 $m P(T^2) = 0.112$	2.54 parameters	$O4^{i}$ -Ag2-S2 ⁱⁱ	90.6 (2)			
WR(F) = 0.115	h-atom parameters constrained			2 1	2 1	
S = 1.20	$\Delta \rho_{\rm max} = 1./4 \ {\rm e} \ {\rm A}^{-3}$	Symmetry codes: (i)	x, y + 1, z; (ii) $-x$	$x + \frac{3}{2}, y + \frac{1}{2}, z;$ (iii) $-x +$	$\frac{3}{2}, y - \frac{1}{2}, z;$ (iv) $x,$	
3392 reflections	$\Delta \rho_{\rm min} = -1.47$ e A	y - 1, z.				

 $-\frac{1}{2}, z;$ (iv) x,etry es: (1) x, y + 1, z $+\frac{1}{2}, z;$ (111) $-x + \frac{3}{2}, y$ y - 1, z.

Table 2			
Hydrogen-b	ond g	eometry	(Å,

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C22-H22A\cdots O4^{i}$	0.93	2.54	3.449 (13)	165
N1−H1C···O3	0.90	2.17	2.942 (12)	143
$N1 - H1D \cdots O1^{v}$	0.90	2.16	3.007 (12)	156
$N2-H2C\cdots O1$	0.90	2.17	3.019 (12)	157
$N2-H2D\cdotsO1^{vi}$	0.90	2.42	3.233 (12)	151

°).

Symmetry codes: (i) x, y + 1, z; (v) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (vi) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

All H atoms were generated geometrically and were allowed to ride on their parent atoms in the riding-model approximation, with C-H = 0.93 (aromatic) or 0.97 Å (CH₂) and N-H = 0.90 Å, and with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

This work was supported financially by the Independent Innovation Foundation of Shandong University (grant No. 2011GN030), the Special Fund for Postdoctoral Innovation Program of Shandong Province (grant No. 201101007) and the China Postdoctoral Science Foundation (grant No. 2012M511010).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: QS3015). Services for accessing these data are described at the back of the journal.

References

Anson, C., Eichhoefer, A., Issac, I., Fenske, D., Fuhr, O., Sevillano, P., Persau, C., Stalke, D. & Zhang, J. (2008). *Angew. Chem. Int. Ed.* **47**, 1326–1331.

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.

Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany. Chen, M. S., Su, Z., Chen, M., Chen, S. S., Li, Y. Z. & Sun, W. Y. (2010). CrystEngComm, 12, 3267–3276.

Dai, F. N., He, H. Y. & Sun, D. F. (2008). J. Am. Chem. Soc. 130, 14064-14065.

Domasevitch, K. V., Solntsev, P. V., Gural'skiy, I. A., Krautscheid, H., Rusanov, E. B., Chernega, A. N. & Howard, J. A. K. (2007). *Dalton Trans.* pp. 3893– 3905.

- Jia, J.-H. & Wang, Q.-M. (2009). J. Am. Chem. Soc. 131, 16634–16635.
- Jin, J.-C., Wang, Y.-Y., Zhang, W.-H., Lermontov, A. S., Lermontova, E. K. & Shi, Q.-Z. (2009). Dalton Trans. pp. 10181–10191.
- Kang, E. J., Lee, S. Y., Lee, H. & Lee, S. S. (2010). Inorg. Chem. 49, 7510– 7520.
- Li, G., Lei, Z. & Wang, Q.-M. (2010). J. Am. Chem. Soc. 132, 17678-17679.
- Li, B., Wei, R. J., Tao, J., Huang, R. B., Zheng, L. S. & Zheng, Z. P. (2010). J. Am. Chem. Soc. 132, 1558–1566.
- Li, B., Zang, S. Q., Ji, C., Du, C. X., Hou, H. W. & Mak, T. C. W. (2011). Dalton Trans. 40, 788–792.
- Mak, T. C. W., Zhao, X.-L., Wang, Q.-M. & Guo, G.-C. (2007). Coord. Chem. Rev. 251, 2311–2333.
- Moss, G. P. (1996). Pure Appl. Chem. 68, 2193-2222.
- Munakata, M., Wu, L. P., KurodaSowa, T., Maekawa, M., Suenaga, Y. & Sugimoto, K. (1997). *Inorg. Chem.* 36, 4903–4905.
- Noguchi, R., Hara, A., Sugie, A., Tanabe, S. & Nomiya, K. (2005). *Chem. Lett.* **34**, 578–579
- Nomiya, K., Kasuga, N. C., Takamori, I. & Tsuda, K. (1998). Polyhedron, 17, 3519–3530
- Nomiya, K., Noguchi, R. & Kato, C. (2000). Chem. Lett. pp. 162-163.
- Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Ren, C. X., Zhu, H. L., Yang, G. & Chen, X. M. (2001). J. Chem. Soc. Dalton Trans. pp. 85–90.
- Schottel, B. L., Chifotides, H. T., Shatruk, M., Chouai, A., Perez, L. M., Bacsa, J. & Dunbar, K. R. (2006). J. Am. Chem. Soc. 128, 5895–5912.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, J., Dai, F. N., Yuan, W. B., Bi, W. H., Zhao, X. L., Sun, W. M. & Sun, D. F. (2011). Angew. Chem. Int. Ed. 50, 7061–7064.
- Sun, D., Liu, F.-J., Huang, R.-B. & Zheng, L.-S. (2011). Inorg. Chem. 50, 12393– 12395.
- Sun, D., Luo, G.-G., Zhang, N., Huang, R.-B. & Zheng, L.-S. (2011). Chem. Commun. 47, 1461–1463.
- Sun, D., Luo, G.-G., Zhang, N., Xu, Q.-J., Jin, Y.-C., Wei, Z.-H., Yang, C.-F., Lin, L.-R., Huang, R.-B. & Zheng, L.-S. (2010). *Inorg. Chem. Commun.* 13, 306– 309.
- Sun, D. F., Ma, S. Q., Ke, Y. X., Collins, D. J. & Zhou, H. C. (2006). J. Am. Chem. Soc. 128, 3896–3897.
- Sun, D., Wang, D.-F., Han, X.-G., Zhang, N., Huang, R.-B. & Zheng, L.-S. (2011). Chem. Commun. 47, 746–748.
- Sun, D., Wang, D. F., Liu, F. J., Hao, H. J., Zhang, N., Huang, R. B. & Zheng, L. S. (2011). CrystEngComm, 13, 2833–2836.
- Sun, D., Yang, C.-F., Xu, H.-R., Zhao, H.-X., Wei, Z.-H., Zhang, N., Yu, L.-J., Huang, R.-B. & Zheng, L.-S. (2010). *Chem. Commun.* 46, 8168–8170.
- Tsyba, I., Mui, B. B.-K., Bau, R., Noguchi, R. & Nomiya, K. (2003). Inorg. Chem. 42, 8028–8032.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wu, H. B., Huang, Z. J. & Wang, Q. M. (2010). Chem. Eur. J. 16, 12321-12323.
- Xie, Y. P. & Mak, T. C. W. (2011). J. Am. Chem. Soc. 133, 3760-3763.
- Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.
- Yilmaz, V. T., Yilmaz, F., Karakaya, H., Buyukgungor, O. & Harrison, W. T. A. (2006). Polyhedron, 25, 2829–2840.
- Yin, Z., Wang, Q.-X. & Zeng, M.-H. (2012). J. Am. Chem. Soc. 134, 4857–4863.
- Zhang, X.-L., Guo, C.-P., Yang, Q.-Y., Wang, W., Liu, W.-S., Kang, B.-S. & Su, C.-Y. (2007). *Chem. Commun.* pp. 4242–4244.

supplementary materials

Acta Cryst. (2012). C68, m229-m232 [doi:10.1107/S0108270112031125]

A novel one-dimensional silver cylinder stabilized by mixed 2-mercaptobenzoic acid and ethylenediamine ligands

Di Sun and Zhi-Hao Yan

(I)

Crystal data

 $\begin{bmatrix} Ag_4(C_7H_4O_2S)_2(C_2H_8N_2) \end{bmatrix}$ $M_r = 795.91$ Orthorhombic, *Pbca* a = 22.1562 (2) Å b = 6.9556 (7) Å c = 25.0366 (5) Å V = 3858.4 (4) Å³ Z = 8F(000) = 3024

Data collection

Oxford Diffraction Gemini S Ultra CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2008) $T_{\min} = 0.569, T_{\max} = 0.816$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.113$ S = 1.203392 reflections 254 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map $D_{\rm x} = 2.740 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 15021 reflections $\theta = 6.1-54.9^{\circ}$ $\mu = 4.24 \text{ mm}^{-1}$ T = 298 KBlock, colorless $0.15 \times 0.08 \times 0.05 \text{ mm}$

22503 measured reflections 3392 independent reflections 2660 reflections with $I > 2\sigma(I)$ $R_{int} = 0.075$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 3.2^{\circ}$ $h = -25 \rightarrow 26$ $k = -8 \rightarrow 8$ $l = -29 \rightarrow 29$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.P)^2 + 78.8999P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.74$ e Å⁻³ $\Delta\rho_{min} = -1.47$ e Å⁻³ Extinction correction: *SHELXL*, Fc*=kFc[1+0.001xFc²\lambda³/sin(2 θ)]^{-1/4} Extinction coefficient: 0.00033 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ х v Ζ Ag1 0.61643 (4) 0.57842 (13) 0.65672 (3) 0.0333(2)Ag2 0.73427 (4) 0.59199(12)0.59542 (3) 0.0309(2)Ag3 0.74726(4)0.55368 (13) 0.71139(3)0.0341(3)Ag4 0.61174 (4) 0.14528 (14) 0.70152 (4) 0.0389(3) **S**1 0.67214 (12) 0.8166 (4) 0.0292 (6) 0.72588 (11) S2 0.67417 (12) 0.2968(4)0.60997 (11) 0.0282(6)C1 0.4973(5)0.2825 (17) 0.6291 (4) 0.034(3)H1A 0.5276 0.3405 0.6062 0.041* 0.2383 H1B 0.4647 0.6064 0.041* C2 0.4734(5)0.4330 (17) 0.6657 (5) 0.036(3) H2A 0.4492 0.6452 0.044* 0.5228 0.6919 0.044* H₂B 0.4473 0.3729 C11 0.6730 (5) 0.7783 (16) 0.7973 (4) 0.026(2)C12 0.6525 (5) 0.6025 (16) 0.8191 (4) 0.029(2) C13 0.6540(5)0.5820(17)0.8754(4)0.034(3)0.041* H13A 0.6402 0.4685 0.8908 C14 0.9077 (5) 0.6753 (5) 0.726(2) 0.045 (3) H14A 0.6773 0.7085 0.9445 0.053* C15 0.6939(5)0.8983 (18) 0.8852(5)0.038(3)H15A 0.7070 0.9977 0.9072 0.046* C16 0.6931(5)0.9240(17)0.8303(4)0.033(3)0.039* 1.0396 0.8157 H16A 0.7061 C17 0.6293(5)0.4385 (16) 0.7879(4)0.030(2)C21 0.6315(5)0.2696 (17) 0.5497(4)0.029(3)C22 0.6116 (5) 0.5207(4)0.030(2)0.4255 (15) H22A 0.6244 0.5481 0.5303 0.036* 0.5732 (6) 0.4779 (5) C23 0.4036 (18) 0.042(3)0.050* H23A 0.5607 0.5110 0.4588 C24 0.5533(5)0.2230 (18) 0.4633 (4) 0.036(3) H24A 0.5270 0.2093 0.4346 0.044* C25 0.5725(5)0.0613 (17) 0.4915 (4) 0.032(3)H25A 0.5593 -0.06120.4823 0.039* C26 0.6125 (5) 0.0890(15)0.5343(4)0.028(2)C27 0.6339(5)-0.0938(17)0.5635(5)0.036(3)N1 0.5246(4)0.1131 (14) 0.6561(3)0.032(2)0.038* H1C 0.5305 0.0223 0.6310 0.4969 0.6790 0.038* H1D 0.0664

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

NO	0.5216(4)	0.5400(14)	0 6027 (4)	0.022 (2)
INZ	0.3210 (4)	0.3400 (14)	0.0937 (4)	0.033 (2)
H2C	0.5268	0.4829	0.7256	0.040*
H2D	0.5072	0.6586	0.7002	0.040*
01	0.5762 (3)	0.3827 (12)	0.7951 (3)	0.0371 (19)
O2	0.6647 (3)	0.3566 (11)	0.7549 (3)	0.0345 (18)
O3	0.5989 (4)	-0.1657 (11)	0.5971 (3)	0.0358 (19)
O4	0.6855 (3)	-0.1518 (11)	0.5508 (3)	0.0353 (19)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Ag1	0.0353 (5)	0.0319 (5)	0.0325 (5)	-0.0016 (4)	0.0007 (4)	0.0010 (4)
Ag2	0.0320 (5)	0.0289 (5)	0.0319 (4)	-0.0033 (4)	0.0004 (3)	0.0015 (4)
Ag3	0.0329 (5)	0.0376 (5)	0.0318 (4)	0.0046 (4)	0.0007 (4)	0.0019 (4)
Ag4	0.0391 (5)	0.0357 (5)	0.0421 (5)	0.0009 (4)	-0.0073 (4)	0.0002 (4)
S 1	0.0302 (15)	0.0291 (15)	0.0284 (14)	-0.0004 (12)	-0.0042 (11)	-0.0009 (12)
S2	0.0279 (14)	0.0286 (15)	0.0281 (13)	-0.0026 (12)	-0.0025 (11)	0.0020 (12)
C1	0.031 (6)	0.042 (7)	0.029 (6)	-0.006 (6)	0.001 (5)	0.000 (5)
C2	0.031 (6)	0.032 (6)	0.046 (7)	-0.009(5)	0.002 (5)	-0.001 (6)
C11	0.024 (5)	0.026 (6)	0.029 (6)	0.002 (5)	0.005 (4)	-0.003 (5)
C12	0.029 (6)	0.031 (6)	0.028 (6)	0.008 (5)	0.004 (5)	-0.007 (5)
C13	0.031 (6)	0.036 (7)	0.034 (6)	0.007 (5)	0.005 (5)	-0.008 (5)
C14	0.030 (7)	0.076 (10)	0.027 (6)	-0.012 (7)	0.007 (5)	0.006 (6)
C15	0.040 (7)	0.040 (7)	0.033 (6)	-0.008 (6)	0.007 (5)	-0.029 (6)
C16	0.028 (6)	0.031 (6)	0.040 (6)	-0.005 (5)	0.010 (5)	-0.015 (5)
C17	0.034 (6)	0.023 (6)	0.033 (6)	0.000 (5)	0.003 (5)	0.003 (5)
C21	0.023 (5)	0.046 (7)	0.019 (5)	-0.010 (5)	-0.001 (4)	-0.002 (5)
C22	0.045 (7)	0.016 (5)	0.028 (6)	-0.004 (5)	-0.002 (5)	0.003 (4)
C23	0.046 (8)	0.031 (7)	0.048 (7)	0.003 (6)	-0.010 (6)	0.003 (6)
C24	0.036 (6)	0.045 (7)	0.028 (6)	0.001 (6)	-0.015 (5)	-0.004 (5)
C25	0.029 (6)	0.030 (6)	0.038 (6)	-0.006 (5)	-0.013 (5)	0.000 (5)
C26	0.035 (6)	0.023 (6)	0.027 (5)	-0.003 (5)	0.008 (5)	0.007 (5)
C27	0.037 (7)	0.035 (7)	0.035 (6)	-0.015 (6)	-0.006 (5)	-0.002 (5)
N1	0.033 (5)	0.043 (6)	0.019 (4)	0.006 (5)	0.004 (4)	0.000 (4)
N2	0.027 (5)	0.032 (6)	0.040 (5)	0.008 (4)	0.009 (4)	-0.002 (4)
O1	0.033 (5)	0.039 (5)	0.039 (4)	-0.004 (4)	0.003 (4)	-0.001 (4)
O2	0.034 (4)	0.030 (4)	0.040 (4)	-0.006 (4)	0.008 (4)	0.001 (4)
O3	0.042 (5)	0.021 (4)	0.044 (5)	0.000 (4)	0.004 (4)	0.008 (4)
O4	0.025 (4)	0.035 (5)	0.046 (5)	0.007 (4)	0.001 (4)	0.006 (4)

Geometric parameters (Å, °)

Ag1—N2	2.310 (8)	C11—C16	1.381 (15)	
Ag1—O3 ⁱ	2.356 (7)	C11—C12	1.415 (15)	
Ag1—S2	2.616 (3)	C12—C13	1.418 (15)	
Ag1—S1	2.696 (3)	C12—C17	1.476 (15)	
Ag1—Ag2	3.0300 (12)	C13—C14	1.372 (17)	
Ag1—Ag3	3.2102 (12)	C13—H13A	0.9300	
Ag1—Ag4	3.2165 (13)	C14—C15	1.386 (18)	
Ag2—O4 ⁱ	2.365 (8)	C14—H14A	0.9300	

$A\sigma^2 - S^2$	2,474 (3)	C15—C16	1 387 (16)
$A\sigma^2 = S^2$	2 506 (3)	C15—H15A	0.9300
$\Delta \sigma^2 - \Delta \sigma^3$	2.900(3) 2.9298(11)	C16—H16A	0.9300
$Ag3 = S1^{iii}$	2 458 (3)	C17-01	1.253(13)
$A \sigma 3 = S1$	2 499 (3)	C17 - 02	1.233(13) 1.273(13)
$\Delta q_3 = 0_2$	2.32(3)	C_{21} C_{22}	1.275(15) 1.376(15)
$Ag3 = Ag4^{ii}$	2.332(7) 3 1980(13)	$C_{21} = C_{22}$	1.370(15)
$\Delta \sigma 4$ N1	2 253 (9)	C^{22}	1.300(15) 1.376(16)
$\Delta \sigma 4 - \Omega^2$	2.203(9)	$C_{22} = C_{23}$	0.9300
Ag4 - 62 Ag4 - 51	2.308 (8)	C_{22} C_{23} C_{24}	1 381 (16)
Ag4 = S1	2.718(3)	$C_{23} = C_{24}$	0.0300
Ag4 = 32	2.077(3) 3.1080(13)	C24 C25	1.306(16)
Ag4—Ag5	3.1960(13)	C_{24} U_{24}	1.390 (10)
	1.000(11)	C24—H24A	0.9300
SI—Ag3"	2.458(5)	$C_{25} = C_{26}$	1.404 (15)
S1—Ag4 ²	2./18 (3)	C25—H25A	0.9300
\$2—C21	1.791 (10)	C26—C27	1.541 (16)
S2—Ag2 ^m	2.506 (3)	$C_{27} = 0_{3}$	1.248 (13)
C1—C2	1.487 (16)	C27—O4	1.254 (14)
C1—N1	1.486 (14)	N1—H1C	0.9000
C1—H1A	0.9700	N1—H1D	0.9000
C1—H1B	0.9700	N2—H2C	0.9000
C2—N2	1.479 (14)	N2—H2D	0.9000
C2—H2A	0.9700	O3—Ag1 ^{iv}	2.356 (7)
С2—Н2В	0.9700	O4—Ag2 ^{iv}	2.365 (8)
$N_2 = A_{g1} = O_3^{i}$	1010(3)		152 47 (12)
$N_2 = Ag_1 = 0.5$	101.0(3) 122.5(2)	$\frac{1}{2} - \frac{1}{2} - \frac{1}$	132.47(12)
$N_2 - Ag_1 - S_2$	122.3(2) 111.2(2)	$\Delta z^2 = S^2 - A z^4$	112.3(4)
$N_2 = Ag_1 = S_2$	111.3(2) 102.2(2)	Ag2 - S2 - Ag4	152.85(11) 107.26(10)
N2 - Ag1 - S1	105.5(2)	Ag2 - S2 - Ag4	107.20(10)
$O_3 - Ag_1 - S_1$	91.1 (2)	Ag1 - S2 - Ag4	/1.51 (/)
S2—Ag1—S1	121.58 (9)	$C_2 = C_1 = N_1$	115.1 (9)
N2—Ag1—Ag2	1/1.8(2)	C2—CI—HIA	108.5
O3 ¹ —Ag1—Ag2	78.32 (19)	NI-CI-HIA	108.5
S2—Ag1—Ag2	51.34 (6)	C2—C1—H1B	108.5
SI—AgI—Ag2	84.93 (7)	NI-CI-HIB	108.5
N2—Ag1—Ag3	130.1 (2)	H1A—C1—H1B	107.5
O3 ¹ —Ag1—Ag3	117.4 (2)	N2—C2—C1	112.8 (9)
S2—Ag1—Ag3	73.08 (6)	N2—C2—H2A	109.0
S1—Ag1—Ag3	49.13 (6)	C1—C2—H2A	109.0
Ag2—Ag1—Ag3	55.91 (3)	N2—C2—H2B	109.0
N2—Ag1—Ag4	73.9 (2)	C1—C2—H2B	109.0
O3 ⁱ —Ag1—Ag4	157.4 (2)	H2A—C2—H2B	107.8
S2—Ag1—Ag4	58.03 (6)	C16—C11—C12	120.4 (10)
S1—Ag1—Ag4	111.50 (7)	C16—C11—S1	119.1 (9)
Ag2—Ag1—Ag4	103.51 (3)	C12—C11—S1	120.4 (8)
Ag3—Ag1—Ag4	80.23 (3)	C11—C12—C13	117.6 (10)
O4 ⁱ —Ag2—S2	116.7 (2)	C11—C12—C17	125.1 (9)
$O4 - Ag2 - S2^{n}$	90.6 (2)	C13—C12—C17	117.3 (10)

O4 ⁱ —Ag2—Ag3	125.55 (19)	C14—C13—H13A	119.3
S2—Ag2—Ag3	80.30 (7)	C12—C13—H13A	119.3
S2 ⁱⁱ —Ag2—Ag3	80.10 (7)	C13—C14—C15	119.6 (11)
O4 ⁱ —Ag2—Ag1	82.46 (18)	C13—C14—H14A	120.2
S2—Ag2—Ag1	55.65 (7)	C15—C14—H14A	120.2
S2 ⁱⁱ —Ag2—Ag1	129.92 (7)	C16—C15—C14	120.7 (11)
Ag3—Ag2—Ag1	65.16 (3)	С16—С15—Н15А	119.7
S1 ⁱⁱⁱ —Ag3—S1	162.44 (12)	C14—C15—H15A	119.7
S1 ⁱⁱⁱ —Ag3—O2	95.62 (19)	C11—C16—C15	120.2 (11)
S1—Ag3—O2	81.54 (19)	C11—C16—H16A	119.9
S1 ⁱⁱⁱ —Ag3—Ag2	106.18 (7)	C15—C16—H16A	119.9
S1—Ag3—Ag2	90.68 (7)	O1—C17—O2	122.3 (10)
O2—Ag3—Ag2	113.88 (18)	O1—C17—C12	119.3 (10)
S1 ⁱⁱⁱ —Ag3—Ag4 ⁱⁱ	55.61 (7)	O2—C17—C12	118.4 (10)
S1—Ag3—Ag4 ⁱⁱ	121.06 (7)	C22—C21—C26	118.2 (9)
O2—Ag3—Ag4 ⁱⁱ	147.85 (18)	C22—C21—S2	122.0 (9)
Ag2—Ag3—Ag4 ⁱⁱ	90.07 (3)	C26—C21—S2	119.5 (9)
S1 ⁱⁱⁱ —Ag3—Ag1	139.03 (8)	C21—C22—C23	121.4 (10)
S1—Ag3—Ag1	54.65 (7)	C21—C22—H22A	119.3
O2—Ag3—Ag1	63.92 (18)	C23—C22—H22A	119.3
Ag2—Ag3—Ag1	58.93 (3)	C22—C23—C24	120.3 (11)
Ag4 ⁱⁱ —Ag3—Ag1	146.98 (4)	С22—С23—Н23А	119.8
N1—Ag4—O2	142.4 (3)	C24—C23—H23A	119.8
$N1 - Ag4 - S1^{iv}$	116.9 (3)	C23—C24—C25	120.0 (10)
O2—Ag4—S1 ^{iv}	98.9 (2)	C23—C24—H24A	120.0
N1—Ag4—S2	92.6 (2)	C25—C24—H24A	120.0
O2—Ag4—S2	89.06 (19)	C24—C25—C26	117.9 (10)
$S1^{iv}$ Ag4 $S2$	104.49 (9)	C24—C25—H25A	121.0
N1—Ag4—Ag3 ⁱⁱⁱ	148.9 (2)	C26—C25—H25A	121.0
O2—Ag4—Ag3 ⁱⁱⁱ	65.49 (19)	C21—C26—C25	122.1 (10)
S1 ^{iv} —Ag4—Ag3 ⁱⁱⁱ	48.25 (6)	C21—C26—C27	121.7 (9)
S2—Ag4—Ag3 ⁱⁱⁱ	70.42 (6)	C25—C26—C27	116.2 (10)
N1—Ag4—Ag1	86.8 (2)	O3—C27—O4	127.4 (12)
O2—Ag4—Ag1	65.74 (19)	O3—C27—C26	117.4 (11)
S1 ^{iv} —Ag4—Ag1	148.22 (7)	O4—C27—C26	115.2 (10)
S2—Ag4—Ag1	50.47 (6)	C1—N1—Ag4	119.9 (7)
Ag3 ⁱⁱⁱ —Ag4—Ag1	100.49 (3)	C1—N1—H1C	107.3
C11—S1—Ag3 ⁱⁱ	103.7 (4)	Ag4—N1—H1C	107.3
C11—S1—Ag3	91.7 (3)	CI—N1—H1D	107.3
Ag3 ⁱⁱ —S1—Ag3	89.18 (9)	Ag4—N1—H1D	107.3
C11—S1—Ag1	123.3 (4)	HIC—N1—HID	106.9
Ag3 ⁱⁱ —S1—Ag1	130.56 (11)	C2—N2—Ag1	121.7 (7)
Ag3—S1—Ag1	76.22 (8)	C2—N2—H2C	106.9
C11—S1—Ag4 ⁱ	110.5 (4)	Ag1—N2—H2C	106.9
Ag3 ⁱⁱ —S1—Ag4 ⁱ	76.14 (8)	C2—N2—H2D	106.9
Ag3—S1—Ag4 ⁱ	155.60 (12)	Ag1—N2—H2D	106.9
Ag1—S1—Ag4 ⁱ	98.47 (9)	H2C—N2—H2D	106.7
C21—S2—Ag2	104.3 (4)	C17—O2—Ag4	110.3 (7)
C21—S2—Ag2 ⁱⁱⁱ	104.1 (4)	C17—O2—Ag3	118.8 (7)

supplementary materials

Ag2—S2—Ag2 ⁱⁱⁱ	90.84 (9)	Ag4—O2—Ag3	117.6 (3)
C21—S2—Ag1	101.4 (4)	C27—O3—Ag1 ^{iv}	128.9 (8)
Ag2—S2—Ag1	73.01 (8)	C27—O4—Ag2 ^{iv}	122.7 (7)

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) -*x*+3/2, *y*+1/2, *z*; (iii) -*x*+3/2, *y*-1/2, *z*; (iv) *x*, *y*-1, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C22—H22A····O4 ⁱ	0.93	2.54	3.449 (13)	165
N1—H1 <i>C</i> ···O3	0.90	2.17	2.942 (12)	143
N1—H1D····O1 ^v	0.90	2.16	3.007 (12)	156
N2—H2 <i>C</i> ···O1	0.90	2.17	3.019 (12)	157
N2—H2 D ···O1 ^{vi}	0.90	2.42	3.233 (12)	151

Symmetry codes: (i) *x*, *y*+1, *z*; (v) -*x*+1, *y*-1/2, -*z*+3/2; (vi) -*x*+1, *y*+1/2, -*z*+3/2.